If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+4x-15=0
a = 11; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·11·(-15)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-26}{2*11}=\frac{-30}{22} =-1+4/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+26}{2*11}=\frac{22}{22} =1 $
| x+(0.2x)=30000 | | x-(0.2x)=30000 | | -4(y-2=)-8 | | 9+144=x^2 | | 9+5x-2x=10000000000000000000-2x | | 180-x+180-x-30+50=180 | | (3/2p)-14=p+13 | | 2x-56=33 | | -5.4x+11.6=54.8 | | 2(x+5)=30/5 | | x-12=3x+16 | | 80+(4x+4)=(10+6) | | 33+x=114 | | 55+x=120 | | 6x+2+57+85=180 | | 3.700.000.000/4.600.000.000=x/19 | | 11/13+m=24/13 | | 11.5=x-(-5.7) | | n-(-16)=99/4 | | -225/44=-5/8v | | -32=-15+k | | -7x-6x=4 | | x+x=1/6x=13 | | -9+9x=180 | | 6x-3=1/3(21x+18) | | 4x+5x-6x+7x-8x+9x-10x=50 | | 10x+8-9x=2x+4-5x | | 2(3x-1)+9=6x+7 | | 3x+5=2(4x-3)-5x | | 3(8n-11)=6(4n-5)-3 | | 2x+8-3x=38 | | 2x-3(4x-1)=-7 |